
PHENIX On-Line and Off-Line Computing

S.S. Adler a T. Chujo a E.J. Desmond a L. Ewell a T.K. Ghosh k

J.S. Haggerty a T. Ichihara f,g B.V. Jacak h,g S.C. Johnson c,h

H-J. Kehayias a J. Lauret i C.F. Maguire k M. Messer a

S. Mioduszewski a,j J.T. Mitchell a D.P. Morrison a I.D. Ojha k

C.H. Pinkenburg a M. Pollack h,j K. Pope j M.L. Purschke a

S. Sorensen e,j I. Sourikova a T.L. Thomas d M. Velkovsky h

Y. Watanabe f,g C. Witzig a S. Yokkaichi f W.A. Zajc b

(The PHENIX Collaboration)

aBrookhaven National Laboratory, Upton, NY 11973, USA
bColumbia University, New York, NY 10027 and Nevis Laboratories, Irvington, NY

10533, USA
cLawrence Livermore National Laboratory, Livermore, CA 94550, USA

dUniversity of New Mexico, Albuquerque, NM, USA
eOak Ridge National Laboratory, Oak Ridge, TN 37831, USA

fRIKEN (The Institute of Physical and Chemical Research), Wako, Saitama
351-0198, JAPAN

gRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY
11973-5000, USA

hDepartment of Physics and Astronomy, State University of New York at Stony
Brook, Stony Brook, NY 11794, USA

iChemistry Department, State University of New York at Stony Brook, Stony
Brook, NY 11794, USA

jUniversity of Tennessee, Knoxville, TN 37996, USA
kVanderbilt University, Nashville, TN 37235, USA

Data handling in PHENIX is carried out by the On-Line Comput-
ing System (ONCS) and Off-Line Computing System (Off-Line).
ONCS provides the overall control and monitoring of the front-
end electronics, trigger and data acquisition system and detector
ancillary systems. It configures and initializes the on-line system,
monitors and controls the data flow, coordinates calibration pro-
cesses, interlocks the data acquisition process with the slow control
subsystems and performs a number of other functions. ONCS uses
CORBA software to monitor and control the hardware. Off-Line
provides all aspects of data handling not directly connected to the
collection of data and monitoring, such as event simulation and re-
construction, data analysis and information management. The im-
pact of the unprecedented data volumes on the design is presented,
along with a detailed discussion of the tasks and methods of simu-
lating, obtaining and monitoring the data.



zajc@nevis.columbia.edu

1 Introduction

The PHENIX detector [1] is one
of four detectors at the Relativistic
Heavy Ion Collider (RHIC) that are
designed to perform a broad study
of A-A, p-A and p-p collisions to
investigate nuclear matter under ex-
treme conditions. The central arms
of PHENIX measure electrons, pho-
tons and hadrons with excellent res-
olution using tracking detectors [2],
ring-imaging Cherenkov and time-
of flight detectors [3] and electro-
magnetic calorimeters [4]. A pair
of forward spectrometers [5] pro-
vide excellent resolution for muon
pairs. The characteristics of the col-
lision are measured using zero degree
calorimeters, beam-beam counters
and a multiplicity vertex detector [6].
Events of interest for further study
are selected using level-1 and level-2
triggers [7]. All of the above systems
are described in other articles in this
volume.

PHENIX records data at a rate of
roughly 150 events/s for Au-Au run-
ning and roughly 1000 events/s for
p-p running. One Au-Au event is
typically 200 kbytes and a p-p event
is 60 kbytes in size. Event data in
PHENIX are digitized at the front-
end and transferred via data fiber to
VME-based Data Collection Mod-
ules (DCM) [7], where they are zero-
suppressed, packaged, and shipped
to the Event Builder (EvB)[7]. The
EvB assembles a full event from the
individual fragments of data from

the DCM’s. When the event is fully
assembled and passes the level-2
trigger, it is temporarily stored on a
local disk. A fraction of the events
are made available to processes on a
farm of PC’s running Linux for on-
line monitoring purposes. Long-term
storage is provided by a HPSS-based
tape robot system [8] operated by
the RHIC Computing Facility (RCF)
[9]. The average rate of transfer of
data to HPSS is 20 Mbytes/s but for
short time intervals rates as high as
60 Mbytes/s have been obtained.

Upon transfer to HPSS the data be-
comes the responsibility of PHENIX
off-line computing. Off-line comput-
ing encompasses a broad range of
activities including data archiving,
information management and event
reconstruction. It also includes cre-
ation and maintenance of both the
detector simulation package and the
overall framework to support these
various endeavors. Simulation of the
detector response is also necessary.
While these tasks are common to
the off-line computing environments
of most large experiments, the na-
ture of the PHENIX research pro-
gram imposes some novel challenges,
specifically the very high multiplici-
ties of the Au-Au collisions and the
large data volumes of approximately
1.5 Tbytes per day. In addition
PHENIX must be able to accomo-
date the large event size mentioned
above for central Au-Au collisions
but also efficiently handle date at
the approximately 500 kHz interac-
tion rate expected for p-p collisions
at design luminosity.

2



2 The PHENIX On-Line Com-
puting System (ONCS)

The PHENIX On-line system[10] is
a hierarchical, distributed system
containing 12 varieties of custom
front-end modules and 120 DCM’s
reporting to 26 Sub-Event Buffers
(SEB). Event fragments in the SEB’s
are pulled through an ATM switch to
a set of Assembly and Trigger Pro-
cessors (ATP). This heterogeneous
mixture of custom elements, crate
controllers and commodity PC’s run-
ning a variety of operating systems
and communicating via several net-
work protocols must be configured
and controlled by the PHENIX On-
line Computing System (ONCS).

In order to function properly, a large
number of individual components
have to work together and need to
be configured properly. These com-
ponents, which are described in more
detail elsewhere in this issue[7], are
controlled by a number of individual
computers and other processors. A
schematic view of the DAQ front-end
is shown in Fig. 1.

2.1 Control of the System

PHENIX has developed a software
package which controls the data tak-
ing function of the detector. This
software package is called Run Con-
trol (RC) and provides a graphical
user interface which allows one to op-
erate one of the configured partitions
of the DAQ system to enable it to
collect data to a file. It also provides

Fig. 1. Schematic view of the DAQ
front-end.

a server which places all the detector
DAQ components in the appropriate
state to start and stop the collection
and storing of data onto disk. The
development of this client-GUI front-
end and server back-end architecture
was necessary due to the distributed
nature of the PHENIX DAQ system

The 5 main components of the
DAQ system are the timing system,
the front end modules (FEM), the
DCM’s, the EvB and the data logger.
RC orchestrates the control com-
mands to each of these systems in
order for data to flow properly. This
process begins when an accept signal
from the level 1 (LVL1) trigger is sent
to the front-end electronics (FEE)
through the timing system. Next RC
tells the FEM’s to send data up to
the DCM’s, then through the EvB’s
and onto the data loggers where the
data is recorded to disk files. Flex-

3



ibility has been designed into the
system such that one can run the full
detector with all granules configured
into one partition or at the other ex-
treme can be run as a single granule
configured into a single partition.

The underlying communication sys-
tem used by the RC system is the
Common Object Request Broker
Architecture (CORBA) [11] which
controls the many components that
must work together to successfully
accumulate data. CORBA, an in-
dustry standard, provides the abil-
ity to transparently access objects
on remote computers of heteroge-
nous types throughout the network.
A CORBA server is set up on each
one of the detector control systems.
For example, the timing system and
DCM’s are operated by a VME
crate controller which has a CORBA
server running under VxWorks. The
EvB is made up of over 60 Intel
based PC’s running Windows NT.
In each of these PC’s, a CORBA
server is running. Additional compo-
nents that need to be configured are
the Local LVL1 trigger and lookup
tables, the Global LVL1 trigger and
the LVL2 trigger. The main job of
the RC server is to reference the ob-
jects served by the CORBA servers
and execute commands which set the
DAQ components into the appropri-
ate data taking mode.

The overall configuration of the
DAQ system is read from the Global
LVL1 trigger system by RC when
it is first executed. RC then collects
all the references to the timing sys-
tem, DCM boards, EvB nodes and
other elements which are operated

through CORBA objects. When a
user request is downloaded to ini-
tialize a certain partition, RC then
goes through a list of objects in the
correct order and executes the ini-
tializes the function for each object
which in turn executes the initializa-
tion software for each component. A
similar operation is done when the
user requests the detector to start or
stop collecting data.

2.2 Data Transfer

The data acquisition system can ac-
quire data at a peak data rate of
about 60 Mbytes/s. The duty fac-
tor of the RHIC accelerator and the
PHENIX experiment combined is
expected to be of the order of 30%.
This duty factor, combined with the
instantaneous data rate and sub-
stantial local buffering capability , is
well-matched to the average band-
width of 20 Mbytes/s allocated to
PHENIX for storage into HPSS.
This data rate is driven by available
mass storage technology, and by the
amount of data that can be handled
and analyzed by RCF. With an event
size of about 200 kbytes for Au-Au
minimum bias collisions, this trans-
lates into a sustained rate of roughly
100 full events per second to tape.

The data are funneled through the
“Event Transfer” (ET)[12] system,
which was developed at Jefferson
Laboratory and adapted for use in
PHENIX. The ET system allows one
to receive data from an arbitrary
number of sources into an event pool,
and to distribute the event data to an

4



arbitrary number of local and remote
client processes. The data logger is
one special example of such a client.
It has special privileges which guar-
antee the delivery of all events. The
data logger is the only client allowed
to throttle the data flow by raising
the data acquisition busy signal if it
cannot keep up with the data rate.
All other clients receive events on a
best-effort basis only, thus they must
have the capability to “skip” events.
These clients are typically on-line
monitoring processes which analyze
the data and verify the proper state
and proper functioning of the detec-
tors.

The data from the EvB are temporar-
ily stored on two large disk arrays
of about 850 Gbytes, each of which
holds a maximum of 12 hours of data
taken at the design rate. By buffer-
ing the incoming data on the local
disks, the data can be transferred to
the HPSS system at a steady rate
and excess data can be transferred
during down times of the accelerator
or the data acquisition. In addition,
the buffering allows one to continue
data taking for some time in case of
a network or HPSS system outage. A
given data set will stay on the disk
for several hours before making room
for new data, which makes it possible
to access the data for various moni-
toring purposes.

The two disk arrays are attached to
two powerful dual-CPU computers
running the Linux operating system.
The machines are equipped with
Gigabit network interfaces which al-
low raw data accumulation rates of
1000 Mbit/s. One of the systems will

receive data from the EvB, while
the other one is sending data to
HPSS. When the receiving disk array
reaches a fill status of about 70%,
and the files of the sending systems
have been transfered, those files are
deleted and the systems switch their
roles. In this way, the disks on one
system are being written only, while
the disks on the other system are
being read only, which greatly in-
creases the throughput of the disk
systems and the respective PCI and
SCSI data busses. We have achieved
long-term sustained data rates of
40 Mbytes/s into the HPSS system,
which leaves sufficient contingency
to make up for lost transfer time, for
example in the event of a network
outage.

2.3 Online Monitoring and Calibra-

tions

During data taking, the event data
are continously monitored to ensure
the quality of the data. In addition
to a number of desktop systems, the
PHENIX experiment has a cluster
of 32 dual-CPU computers using
Linux, which run the monitoring and
calibration algorithms. On-line mon-
itoring processes typically use data
from the ET pool, with a latency of
a few seconds after the data have
been recorded. It is possible to dis-
tribute, in addition to the data log-
ging, about 20% of the events in this
way without an impact on the total
data rate through the system. For
this kind of monitoring, priority is
given to so-called calibration events.
These are special events reading data

5



generated by various calibration sig-
nals, which is detector specific. For
example, detectors with a photomul-
tiplier readout system have a laser
system which distributes short light
pulses of known intensity to the de-
tector cells. The data from those
special events allow one to monitor
the photomultiplier gain, and cor-
rect gain changes that exceed prede-
termined thresholds. Other systems
with charge-sensitive ADC’s allow
one to inject a charge into the ADC
and thus monitor the ADC gain.
Those events, which typically pro-
duce a signal in all cells of the detec-
tor, also allow one to recognize non-
functional areas, for example in the
event of a high voltage failure. Some
data from actual collisions is also
distributed through the ET system,
but the main use is the distribution
of these calibration events.

When reading from the ET pool,
clients request data according to
an event profile. At the time when
an event is added to the pool, it is
supplemented with an event profile,
which provides a high-level summary
of its characteristics. In this way, a
monitoring process can request only
those types of events which are of
interest (for example, the above-
mentioned laser events) and will not
be burdened with other events it
would otherwise need to discard.

The calibration events are used to
monitor gain variations over time
and alert the shift crew to a problem
as quickly as possible. In order to es-
tablish the calibration constants, and
to determine the efficiency and ver-
ify the proper working of the Level-2

trigger, it is necessary to analyze a
large amount of data from actual col-
lisions. This is done by reading the
files which are being transferred to
the HPSS system, which is possible
because the files stay on the disks
for several hours. The throughput
permits data transfer at a rate of
20 Mbytes/s, while providing simul-
taneous read access for the various
analysis processes at an aggregate
rate of roughly 40 Mbytes/s. The
goal is to have a preliminary set of
physics calibration constants with
an accuracy of better than 10% for
a given dataset by the time the data
are stored in the HPSS system.

3 PHENIX Off-line Comput-
ing

PHENIX off-line computing encom-
passes a broad range of activites in-
cluding archiving to and retrieving
data from mass storage, event recon-
struction and simulation, support for
physics analyses and the information
management underlying all these
efforts. PHENIX faces many novel
challenges in addressing these tasks.

One challenge stems merely from the
volume of data which will need to be
handled. In a nominal year PHENIX
is expected to record to tape in ex-
cess of 200 terabytes (Tbytes) of raw
data, 100 Tbytes of reconstructed
data, 100 Tbytes of physics analysis
data and tens of Tbytes of simula-
tion data. This is one to two orders
of magnitude more data than that
collected by previous generations of
nuclear physics experiments. Many

6



of the techniques for working with
data which are familiar to researchers
with a nuclear physics background
simply do not scale to data volumes
of this size.

The computing demands of PHENIX
off-line also pose a challenge. Event
reconstruction, physics analysis and
simulation all require computing
power on a scale which is very large
when compared to the needs of pre-
vious generations of nuclear or high
energy physics experiments. The
average reconstruction time for a
minimum bias sample of

√

s = 200
GeV Au+Au events is about 300
SPECINT95-seconds per event (a
typical CPU today rates around 30
SPECINT95). This problem has a
fairly conventional solution in the
form of loosely coupled compute
farms. Event reconstruction is an ex-
ample of a “trivially parallel” prob-
lem and is well suited to this sort of
computing architecture. Raw data
files are kept to less than 2 Gbytes
in size, they contain nearly 10,000
events and take nearly 12 hours to
reconstruct. Each of the farm nodes
has a 100 Mbit/sec network inter-
face and the transfer rates of data
to and from the reconstruction farm
nodes have been measured at ap-
proximately 6 Mbytes/sec. The total
data transfer time of a reconstruc-
tion job is a small fraction of the
total reconstruction time so that the
reconstruction time per event would
have to fall by a huge factor before
a more tightly coupled computing
architecture would be advantageous.

The compute farm is divided into
a reconstruction farm and an anal-

ysis farm, each of which is roughly
comparable in size. All of the nodes
are identical which allows us to reas-
sign nodes from one part of the farm
to the other as needed. The Load
Sharing Facility (LSF) [13] system
was adopted to manage the batch
system which runs the analysis por-
tion of the farm. We have defined
a single LSF queue for jobs on the
analysis farm A Control Reconstruc-
tion Server (CRS) was developed in-
house to manage the reconstruction
farm. This was necessary since the
compute farm consists of hundreds of
nodes and the expense of purchasing
LSF licenses for the full farm would
be substantial.

Some of the machines of the analysis
farm allow interactive logins while
some are only accessible via a batch
system. The interactive machines
were assigned to different analysis
and detector groups in PHENIX.
On their respective machines, each
group is allowed to decide how their
machine is to be used. They are not
guaranteed exclusive use of the ma-
chine since the batch system contin-
ues to run jobs at low priority on
all analysis machines, but they are
allowed to use the local storage and
run jobs interactively on the node as
they see fit.

The development of off-line software
is organized around packages, each
with a named person as a primary
contact. CVS (concurrent version
system)[14] is used to maintain and
track software revisions. The main
software repository is kept in AFS,
and individual CVS clients act upon
that repository as though it were a

7



local filesystem. The use of an AFS
resident software repository predates
the wide use of CVS servers. If the
repository were being set up today,
the latter approach would be the
preferred one. As appropriate, we
use CVS to define branches in the
development line, which allows us
to segregate bug fixes on a develop-
ment branch headed for production
use from more vigorous development
taking place on the main trunk of
the development tree.

PHENIX reconstruction, analysis
and simulation code consists of about
500,000 lines of code. A code base of
that scale requires an extensive set
of tools to keep it functioning. We
rely heavily on regular rebuilds of
the code to maintain its quality. Usu-
ally a rebuild of all the code is per-
formed once per day. These rebuilds
start completely from scratch, check-
ing out code directly from the CVS
repository and compiling everything
that constitutes the PHENIX off-line
computing environment. There are
often a variety of rebuilds underway
at any time. Examples are building
code for different platforms or with
the code instrumented checking for
memory leaks. We have found that
when the code is working properly, or
is very nearly working properly, the
amount of effort needed to keep it
that way is manageable. If the code is
allowed to diverge far from a working
state, the effort needed to restore it
can be enormous. The daily rebuilds
really help keep the code near to a
state in which it works as it should.

4 Simulation

Simulation of the PHENIX detector
is carried out using the simulation
package called PISA (PHENIX In-
tegrated Simulation Application).
PISA is implemented in GEANT
3.21. The package has been organized
in a highly modular fashion such
that individual detector subsystems
could be developed and tested in a
stand-alone mode while still preserv-
ing the goal of a highly integrated
simulation analysis.

When the detector subsystem de-
signs reached maturity and went into
actual construction, the simulation
goals shifted to furnishing large, re-
alistic simulated event sets to assist
the event reconstruction software
developers in unraveling potential
physics signatures from the future
real data. Three formal Mock Data
Challenges (MDC) were undertaken
before the actual start of real data
acquisition in June 2000. Cumula-
tively, these MDCs generated close
to 1 Tbyte of simulated data files,
as compared with about 5 Tbytes of
real data generated in the first run of
RHIC. These MDC exercises, which
were also conducted by the other
RHIC experiments, were crucial to
the verification of the hardware and
software infrastructure of the RHIC
Computing Facility. The progres-
sively larger scale MDCs were also
valuable in developing the simula-
tion event generation capabilites of
the PHENIX collaboration, both on
and off-site, such that we are able to
generate hundreds of thousands of
minimum bias events per week for

8



comparison with the real data.

The successful implementation of
Level-2 software triggers for run-2
data taking relied heavily on the
availability of simulated data for the
development and testing of the vari-
ous algorithms. The Level-2 software
development uses simulated data
files as part of the process to allocate
the trigger bandwidth. This is con-
firmed by comparisons with analysis
of real data. Similarly, in the outly-
ing years there are plans to introduce
whole new detector subsystems into
PHENIX. The code remains non-
platform-specific and will be used
to optimize by simulation analysis
these new systems.

Simulations using PISA is supported
on a multitude of off-site operations
mostly using Linux systems. PISA
simulations are also carried out off-
site using a Compaq/Alpha farm
and on-site at the SunOS complex
at the RHIC Computing Facility.
The simulation software is the last
major dependency on the CERN
libraries in PHENIX computing.
That depencency does not extend to
the output of the PISA component
since we have recently incorporated
ROOT[15] software for our output
system. Individual subsystem track-
ing information formerly written to
ZEBRA files is now placed into de-
tector specific C++ classes which
are then written into a standard
ROOT Tree file. In the future, when
GEANT3 is replaced by GEANT4,
these classes can be migrated to the
new simulation system without im-
pacting the existing reconstruction
software for simulated events.

5 Reconstruction and Analysis

The reconstruction code is described
in detail elsewhere[16]. The general
approach to reconstruction was to or-
ganize it as a set of modules, each
of which shares a common interface.
Each module has an “event” method
that takes a reference to a node in an
hierarchical tree of data. Each mod-
ule navigates the node tree, finds the
data structures it needs and creates
new nodes to hold the output of the
module.

We use ROOT, an object-oriented
analysis framework developed at
CERN, to provide the I/O interface
to our reconstruction and analysis
framework. ROOT is also used as a
late-stage physics analysis tool for
filling and visualizing histrograms.
ROOT is able to handle a wide va-
riety of built-in and user-defined ob-
jects, and it provides a C++ inter-
face for manipulating those objects.
C++ is a strongly typed language,
and this is somewhat at odds with
the need to handle objects generi-
cally. In a typical application using
ROOT, this results in a dangerous
reliance on type-casting in user code.
We wanted to reduce, or at least cen-
tralize, the need for this in PHENIX
off-line code. This is accomplished
with an interface layer which uses
C++ templates to generate special-
ized code for handling user-defined
types. The result is a general, but
still type-safe, interface to physics
data.

9



5.1 Databases

A pragmatic approach was taken
with respect to the use of databases.
Not all data are stored in a database,
in particular, event data are stored
only as sequential records in HPSS.
The data we do store in a database,
and that are considered archival in
nature, are stored using Objectivity,
an object-oriented database man-
agement system[17]. Interfaces have
been developed on top of raw calls
to Objectivity itself for some appli-
cations within PHENIX. The inter-
face seen most commonly through-
out PHENIX off-line code is that
of the calibration database. Objects
are stored with a validity period as
a key, with each object represent-
ing a particular type of experimental
calibration.

There are other databases besides
Objectivity in PHENIX. Simple re-
lational databases, such as MySQL
[18], are used within the data carousel
file retrieval software (see next sec-
tion) and the on-line run database,
for instance. We have found that
the idea of a complete integration
of all experimental data within one
overarching database system is too
ambitious to be worth the manpower
required to develop and maintain it.

5.2 Resource Management

At present, storage costs are such
that only a small fraction of PHENIX
data can be kept on disk at any
time. The RCF uses the commer-

cial system HPSS [8] to manage the
collection of tape silos, disk caches
and computers that handle the near-
line storage of files. Interaction with
this near-line storage plays a signif-
icant role in PHENIX computing,
and while that interaction has been
engineered to be as straightforward
as reasonably achievable for users, it
has been important to keep it very
efficient in order to maximize our use
of limited available bandwidth. The
relatively long latencies inherent in
retrieving data from tape provide
a strong incentive to aggregate re-
quests for files and read multiple files
from a tape cartridge once that car-
tridge has been mounted in a drive.
A key component in achieving this
in PHENIX has been the develop-
ment of the data carousel, a batch
oriented file staging system that sits
atop HPSS.

One component of the carousel is a
HPSS batch system written by IBM
that given a list of file names and
retrieves files from tape in an order
that tries to minimize the number
of tape mounts needed. The batch
system routinely achieves a factor
of three to five better throughput
than does retrieval of files without
its help. This batch system is fed by
a separate server that implements
PHENIX policies for resource allo-
cation. To retrieve a set of files, a
physicist sends the server a list of file
names, while at the same time iden-
tifying the group within PHENIX
for which this request is being made.
The entries are stored in a MySQL
database. The server starts periodi-
cally, examines the database, deter-
mines the next set of files to send to

10



the IBM batch system, sends them
and exits.

Once a file is staged to HPSS cache,
a call-back is issued via ssh to the
machine specified in the initial stag-
ing request. The call-back invokes
a client side script which checks for
available space and pulls the file from
HPSS using a specialized version of
ftp. Client side policy can be imple-
mented in this call-back script. The
default behavior is a LRU cache, but
this can be adapted by each user as
appropriate.

All of the information needed to de-
fine the state of the server is kept
in the MySQL database. Because of
this, the carousel server is able to run
as a cron job, not as a daemon. This
relieves us of the need to write a pro-
gram capable of running for extended
periods of time without leaking re-
sources. This has helped make the
system exceedingly stable. Having in-
formtation in the database also sim-
plifies the development of web inter-
faces that can be used to see which
files have been staged to disk, which
ones will happen soon and which ones
have errors being staged.

We also use a file catalog, im-
plemented as a set of Objectivity
databases, in order to keep track of
the locations of files. Each significant
file that is generated in PHENIX is
given a unique name and that name
serves as a key into the file cata-
log. Each file may have one or more
replicas (physical instantiations of
the file) and a list of URIs (univer-
sal resource indicators) locating the
replicas it stored as part of the file

catalog. The uniqueness of each file
name is important for this scheme to
work properly. Until now, only lim-
ited use has being made of the file
catalog as we have had sufficient disk
space to keep a single copy of nearly
all reconstructed output on disk. The
data set for future runs is expected
to dwarf any realistic hope of keep-
ing all, or even a large fraction, of
the data on disk and one would then
expect the file catalog to play an in-
creasingly indispensible role in daily
data analysis activities.

5.3 Software Quality

A significant challenge facing PHENIX
off-line software is that of soft-
ware quality. The correctness of the
physics results hinges on the quality
of the code. Our ability to get any
results at all requires code of suffi-
cient quality to run without crashing
while reconstructing many Gbytes
of data. Our reconstruction code in
particular has to run for such a long
period of time to process a file that
its quality requirements have much
in common with those of system-level
daemons like NFS servers.

Many people, with a wide variety
of skills, and many of whom are no
longer with the collaboration, have
contributed to the PHENIX code
base. This presents a substantial
maintenance challenge. We have em-
ployed several tools to try and char-
acterize our code, in order to focus
the limited manpower available for
improvement on the most critical
pieces of code. We use the statisti-

11



cal profiler jprof [19] to determine
in which pieces of code consume the
most computing cycles. It is not at
all unusual to produce a several-fold
speedup in a routine once a physi-
cist with more programming expe-
rience takes a look at it. In some
extreme cases, several hundred-fold
speedups in specific routines have
been achieved.

In addition to performance improve-
ments, we have had to devote a fair
amount of manpower to controlling
memory growth of the reconstruction
code. While processing a full file of
raw Au-Au data our reconstruction
program will loop over thousands of
events and hundreds of thousands of
tracks. Our code starts out with a
virtual set size (VSS) of about 300
Mbytes; our reconstruction nodes
have 1 Gbyte of RAM and run two
jobs simultaneously. If the VSS grows
much faster than about 20 kbyte per
event the program slows significantly
before it has a chance to finish, as
the system settles into heavy swap-
ping. Some of this memory growth is
of course due to actual memory leaks
and some of it is just the growth of
dynamically resizeable structures in
response to seeing a larger sample of
data. The “knee” in the multiplic-
ity or spectrum in Au-Au occurs at
about 0.5% of the total cross sec-
tion, so one would expect that the
high-water mark of memory usage
(assuming rough proportionality be-
tween memory usage and event mul-
tiplicity) to grow randomly, and of-
ten very rapidly, with the number of
events for the better part of the first
few hundred events of a minimum
bias event sample. Our raw data files

contain 5000-10000 events but after
one or two thousand events the mem-
ory growth of a reconstruction job
due to sampling the event size dis-
tribution is not significant. Finding
true memory leaks is difficult; but
through a combination of informal
code reviews and the use of the com-
mercial leak checker Insure [20], we
have reduced our asymptotic mem-
ory growth to about 15 kbytes per
event, a level which is tolerable if not
ideal. .

Another aspect of code quality that
has received a fair amount of atten-
tion in PHENIX is that of repeata-
bility. In principle, reconstructing a
file of raw data twice should yield
the same results. In principle, it
shouldn’t matter whether one runs
the reconstruction code under Linux
or Solaris. In practice, these things
matter, until effort is expended to
track down the reason for the dif-
ferences and deal with them. Usu-
ally this detective work uncovers an
uninitialized variable or an instance
of reading past the end of an array.
We have written sofware modules
which print out selected results as
simple text files. Variations in the
output between different runs of the
code are used to hunt for the software
cause. This procedure is being incor-
porated into our nightly software re-
builds and tests to help us spot new
problems as they are introduced.

5.4 Off-Site Facilities

Because of the widely distributed
nature of the collaboration and the

12



enormous computing requirements
of PHENIX, off-site computing fa-
cilities have an important place in
the computing plan. Primary recon-
struction of the experimental data
takes place at BNL, but off-site fa-
cilities are the primary providers of
computing for simulations and the
subsequent reconstruction of those
simulated events, and they are im-
portant centers for regional analysis.
This is especially important as the
bandwidth and latency of current
wide-area networks make working at
BNL from afar painful, if not outright
impractical, for interactive analysis.
At this stage the flow of data to and
from off-site facilities is deliberately
simplistic. BNL maintains the mas-
ter copy of the Objectivity database
and off-site facilities either connect
directly to the database at BNL or
make periodic slave copies for lo-
cal installation. All data eventually
flow to BNL from where is can be
redistributed. A major addition to
the computing facilities available re-
sulted from the installation of the
PHENIX Computing Center-Japan
(CC-J) [21]. This facility has a stor-
age space of 400 Tbytes and resulted
in a large increase in PHENIX com-
putational capabilities.

PHENIX off-line computing is a
pragmatic hybrid of new technolo-
gies needed to handle the enormously
large data sets that will be col-
lected and concessions to real-world
constraints. It has proved a reason-
ably successful strategy for the dis-
tributed development of a complex
system of software.

6 Acknowledgements

We acknowledge support from the
Department of Energy (U.S.A.)

References

[1] Article entitled “PHENIX Detector
Overview” this volume.

[2] Article entitled “PHENIX Central
Arm Tracking Detectors” this
volume.

[3] Article entitled “PHENIX Central
Arm Particle I.D. Detectors” this
volume.

[4] Article entitled “PHENIX
Calorimeter” this volume.

[5] Article entitled “PHENIX Muon
Arms” this volume.

[6] Article entitled “PHENIX Inner
Detectors” this volume.

[7] Article entitled “PHENIX On-Line
Systems” this volume.

[8] http://www.sdsc.edu/hpss

[9] RCF paper this volume.

[10] M.L. Purschke et al., IEEE Trans.
on Nucl. Sci. 47, (2000) 51.

[11] E. Desmond et al., Proc. of the
Real-Time 99 Conf., Santa Fe, NM,
(1999).

[12] C. Timmer et
al., CHEP2000, Padova, February
2000, http://chep2000.pd.infn.it/
short p/spa e058.pdf.

[13] http://www.platform.com.

[14] http://www.cvshome.org/

13



[15] R. Brun and F. Rademakers, Nucl.
Instr. & Meth. in Phys. Res. A389,
(1997) 81.

[16] J.T. Mitchell et al., Nucl. Instr. &
Meth. in Phys. Res. A482, (2002)
491.

[17] Objectivity, Inc.,
http://www.objectivity.com.

[18] M. Maslakowski and T. Butcher
“SAMS Teach Yourself MySQL”,
Macmillian Co., Indianapolis, IN
46290, U.S.A. (2000).

[19]
http://lxr.mozilla.org/mozilla/source/tools
/jprof/README.html.

[20] http://www.parasoft.com.

[21] http://ccjsun.riken.go.jp.

14


